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Overview

• TEMPEST is a 5-D kinetic code to simulate edge plasmas; runnable
as a 4-D kinetic transport code.

• In order to perform quick-running studies of combined neoclassical
and anomalous transport, we have added the following to
TEMPEST:
– an upgraded Krook collision model that simultaneously conserves

density and energy
– a model for anomalous transport

• This approach provides a possible starting point for a future self-
consistent turbulence and transport model, where the model
transport coefficients would be extracted from a simultaneously
running 5D simulation.



Gyrokinetic equation has been implemented in the
continuum TEMPEST for the edge

• GK F-equation discretized with high order (4th); Fokker-
Planck collisions

• Full-f and δf options available
• Circular & divertor geom.; 2D equilibrium potential
• Runnable as

– 4-D for transport with F(Ψ,θ,ε,µ), or
– 5-D for turbulence with F(Ψ,θ,φ ,ε,µ) (poster 122 in this session)

• Extensions planned:
– sources/sinks
– model transport coefficients for initial anomalous transp.
– generalized GK equations (see Qin)
– optional fluid equations in same framework
– *field-aligned coordinates for evolving B

This poster



Formulation, implementation, and testing of an
anomalous radial diffusion operator

Our goal is to add a model for turbulent transport that can be
combined with neoclassical ion transport

• need a diagonal transport matrix for comparison with fluid models
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Model the turbulent transport as a combination of advection and
diffusion, as is conventionally done in fluids

– Ua, D depend on position (ψ) and velocity (v)
• specifying different velocity dependence allows separate control of “Dn” and “χ” (and

mom. coeff.)

• advection Ua allows D(v) to be positive for all velocities

• provides flexibility, speed (compared to coupling turbulence), and comparison to fluid
models



Modeling the transport coefficients

Define convective coefficient

Particle flux
&
Heat flux
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• Particle flux not directly dependent on the local temperature gradients
• Particle flux leads to a corresponding heat flux (specific heat)

Define diffusive coefficient

where
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Modeling the transport coefficients

Diagonal form of the
transport matrix for

α can be chosen to ensure positivity of the diffusion coefficient
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– For the diffusion coefficient with a
simple quadratic dependence over
speed (v), we choose

– Diffusion coefficient is non-negative
over the velocity domain if
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Anomalous radial transport: Implementation

• Kinetic equation is now second-order differential equation in
space
– boundary conditions enforced for incoming & outgoing particles at

radial boundaries
– diffusion evaluated using a 2nd order Central Differencing Scheme

• Contribution to radial transport computed by computing moments
of the flux (Γa) over the velocity (εo, µ) space

• Velocity coordinates are (εo, µ)
– derivative at constant v not the same as derivative at constant (εo, µ)
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Moments of the distribution function are needed to update the
Maxwellian

– Numerical error in the moment computation affects        and hence, the conservative
character of the collision term

– Moments are computed twice at each time step to account for this error

• Error is reduced, but not eliminated
• Computing moments twice each time-step is computationally expensive

–         is a Maxwellian corresponding to the
local density and temperature

– model conserves energy & particle density

Krook Collision Model: Implementation

Computation of radial transport of particles and energy requires a number- and
energy-conserving collision model. In order to have one that is reasonably fast,
we implement an upgrade of TEMPEST's Krook model that simultaneously
conserves energy and particle density
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• Diffusion and collision model implementations were tested on an
annular geometry

– small aspect ratio  cylindrical geometry
– domain is periodic in the poloidal direction
– Krook collision term is computed to check conservation/cost
– initially radial/poloidal drift switched off  diffusion in an annulus

– Case I: uniform temperature with a radial density gradient
– Case II: radial temperature gradient with uniform density

• Simulation parameters:
– domain width is 0.1*minor radius
– spatial grid: 32(radial) by 8(poloidal)
– Max kinetic energy (velocity space extent): 16*T
– Velocity space grid: 65 (εo) by 50 (µ )

Anomalous Diffusion + Krook Collision: Test case
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I. Radial density gradient, uniform temperature

– Diffusion model is defined
by a diffusivity of 10 m2/s
and conductivity of 35 m2/s

– Density is initialized to an
exponential profile

– Density approaches a
logarithmic variation, as is
expected at steady-state

– Temperature begins to
relax back to its initial state



II. Radial temperature gradient, uniform density

– Diffusion model is defined
by a diffusivity of 10 m2/s
and conductivity of 35 m2/s

– Temperature reaches a
steady-state early, and
remains unchanged

– Density yet to relax to
initial state, unlike the
temperature in earlier case



Neoclassical & Anomalous radial transport

• In this test simulation, we combine
the anomalous transport model with
radial drifts and the Krook collision
model. There is no radial electric
field in this case, and hence the drifts
are due to grad(B) and curv(B).

• We can see that, though the flux due
to the drifts is two orders of
magnitude greater locally, the
poloidally averaged radial transport
due to the drifts is of the same order
as anomalous transport.
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drifts



• An anomalous radial transport model in the form of a combination of
convective and diffusive transport has been added to TEMPEST
– the model is in the form of a diagonal transport matrix; transport

coefficients can be assigned so as to be equivalent in the highly
collisional limit to fluid models; allows comparison with fluid models.

– in the future the transport coefficients could be extracted from a
simultaneously running 5D simulation

• The Krook collision model in TEMPEST has been upgraded to make
it more suitable for simultaneous neoclassical and anomalous radial
transport calculations
– particle/energy conservation in the Krook collision term requires

moment computation more than once to improve accuracy
– multiple moment computation is computationally expensive
– need a less expensive model (one moment computation per time-step)

Summary

( )

( )Tnf

Tnf

fafaf

iiM

MMM

i

,)(

,)(

)()()(

!!"!

!!"!

+=

num

num

21

v

v

vvv
21

( ) )(,)(

;

vv
num

12

1

2

2

12

2

1

1

fTnf

TT

TT

n

n
a

TT

TT

n

n
a

num

M !!!"!!#!

$$
%

&
''
(

)

*

*
=$$

%

&
''
(

)

*

*
=

Computed
only at t=0

at current
time-step


